If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+2n-10=0
a = 5; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·5·(-10)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{51}}{2*5}=\frac{-2-2\sqrt{51}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{51}}{2*5}=\frac{-2+2\sqrt{51}}{10} $
| ×+35=2x+10 | | (2x-4)^2=20 | | 10+6n=34 | | 4x-5(x+2)=2x+1 | | 28-w=-5 | | 16.95+.84x=195.03 | | -22+2k=-24 | | 21y+14=-49 | | r^2=-12r-22 | | d-3.4/7=2.8 | | 5(3x-2)-7=-x-33 | | 28x-18=38 | | f/6-3=-5 | | x(0.01x-0.02)=0 | | 4x-24=-64 | | 9=x-(-9) | | y-18/3=9 | | 24=-6-3x | | 4p^2-4p+3=0 | | X-5=4/3x | | 3x^²+5=30 | | 5/x-3/0.16-x=0 | | 8n(28-n)=7(n-4) | | 1400=10z^²+2 | | q2= 2.34 | | 21=b-8 | | 4x+3=22÷7 | | 4-x/3=10 | | 9^x+3^x=12 | | 3x-5=2(4x-8) | | 744y=14 | | y3= 1 |